Section A

- Everything included in IOI syllabus
- Elementary Number Theory
- Graph Theory and Algorithms
- Enumerative Combinatorics
- Probability
- Geometry

The main focus will be on the following aspects:

- 1. Systematically following, simulating and reasoning about sets of instructions, protocols, structures, etc.
- 2. Understanding the correctness of algorithms
- 3. Assessing performance of algorithms
- 4. Reasoning about discrete structures
- 5. Reasoning about combinatorial games
- 6. Understanding implications of logical statements

Section B

- Algorithms:
 - Graph algorithms (connectivity, spanning trees, matchings, flows etc.)
 - Number-theoretic algorithms (primality testing, factorization etc.)
 - Computational geometry
 - Divide and conquer, dynamic programming, greedy algorithms, and other common techniques
 - Basic running time analysis
 - Randomized and approximation algorithms
- Complexity:

- Basic complexity classes (P, NP, P-space etc.)
- Reductions and completeness
- Interactive proofs, probabilistically checkable proofs
- Hardness of approximation
- Theory of Computation:
 - DFA/NFA and regular languages
 - Context-free grammars and pushdown automata
 - Turing machines / Oracle Turing machines
- Discrete Mathematics:
 - Graph theory
 - Enumerative combinatorics
 - Probability
- Logic:
 - Propositional logic
 - First-order logic
 - Truth tables
 - Proof systems
- Miscellaneous:
 - Game theory
 - Basic programming in a language of choice
 - Computational number theory
 - Derandomization techniques
 - Cryptography
 - Quantum information and computation
 - Linear algebra

The main focus will be on the following aspects:

- Comprehensive understanding of algorithms and algorithmic paradigms such as greedy algorithms, dynamic programming, divide & conquer, and introductory graph algorithms. A preliminary knowledge of analysis of these algorithms is essential.
- 2. Understanding of data structures and various discrete structures such as graphs, trees, heaps, stacks, and queues.
- 3. An understanding of finite state machines, pushdown automata, and Turing machines, along with their properties and representations including grammars and computation models.
- 4. An understanding of computation in terms of complexity and decidability.